Государственная корпорация по космической деятельности Роскосмос

Министерство просвещения Российской Федерации

ДОПОЛНИТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«Физика космоса»

Направленность: естественно-научная

Уровень программы: базовый

Возраст учащихся: 12-13 лет (7 класс)

Срок реализации: 54 часа

Пояснительная записка

Направленность

Направленность рабочей программы естественно-научная. Данная программа составлена с учетом нормативных требований к программам дополнительного образования детей.

Актуальность

Актуальность данной программы определяется запросом со стороны профессионального сообщества аэрокосмической отрасли на профессионально-ориентированную программу, сфокусированную на воспитание в учащихся патриотизма, интереса к инженерно-техническому творчеству, особенно в аэрокосмической отрасли Российской Федерации.

Данная программа предполагает изучение законов, явлений и закономерностей физики космоса.

Знание физики космоса является фундаментом для формирования инженерных кадров нового поколения, которые будут направлены на решение задач, связанных с реализацией Федеральной космической программы Российской Федерации.

Цель программы

Целью программы является интенсивное и всестороннее обучение законов, явлений и закономерностей физики космоса, а также формирование соответствующей базы знаний и умений, которая в дальнейшем будет способствовать ведению научной, исследовательской и инженерной деятельности учащихся, избравших для себя аэрокосмическую отрасль.

Задачи

Обучающие:

- изучить законы, явления и закономерности физики космоса;
- сформировать знания основ физических явлений и идей;
- научить решать конкретные задачи из различных областей физики, связанных с космосом.

Развивающие:

- развить навыки решения теоретических задач физики космоса и прикладных задач будущей профессии;
- развить навыки применения полученных знаний для описания физики космоса.

Воспитательные:

- воспитать дисциплинированность, ответственность;
- воспитать в обучающемся навыки логического мышления;
- воспитать интерес к профессиям, связанных с применением физики космоса.

Группа/категория учащихся: 12-13 лет (7 класс).

Форма работы

Основной формой работы являются групповые занятия. Занятия проходят 3 раза в неделю. Продолжительность 1 занятия составляет 45 минут (1академический час).

Срок реализации программы

Срок реализации программы — 54 академических часа. В первом полугодии 7 класса (18 учебных недель).

Планируемые результаты

Личностные результаты:

- формирование представления учащихся о мире профессий в целом и профессиях и направлениях исследований, востребованных в аэрокосмической отрасли;
- формирование основ социально-критического мышления;
- формирование мотивации изучения физики космоса и стремления к самосовершенствованию в технической области знаний;
- осознание возможностей самореализации в технических науках средствами проектной деятельности;

- формирование основ проектной компетенции в технических науках;
- развитие целеустремлённости, творческого подхода в вопросах проектирования, инициативности, трудолюбия, дисциплинированности.

Метапредметные результаты:

- развитие умения осуществлять анализ результатов и способов проведения исследования на уровне наблюдения и первичного эксперимента и вносить необходимые коррективы;
- развитие умения устанавливать причинно-следственные связи, строить логические рассуждения, умозаключения (индуктивное, дедуктивное и аналоговое) и делать выводы;
- развитие умения создавать, применять и преобразовывать знаковосимволические средства, модели и схемы для решения учебных и познавательных задач;
- развитие умения адекватно и осознанно использовать технические средства в соответствии с проектными задачами: для планирования и регуляции своей деятельности;
- развитие исследовательских учебных действий, включая навыки работы с информацией: поиск и выделение нужной информации, её обобщение и фиксация;
- развитие анализа технических решений, включая умение выделять проблему, прогнозировать возможные решения, формировать критерии эффективности, проводить анализ решений, устанавливать логическую последовательность основных фактов.

Предметные результаты:

- умение формировать технические решения в процессе командноролевой деятельности;
- формирование этапов и организация процесса выполнения проекта;

- умение формировать критерии эффективности проектных решений;
 - умение взаимодействия в команде;
- умение проводить анализ чертежей и технических схем по заданным критериям;
 - умение ориентироваться в пространственных данных;
- умение самостоятельно решать поставленную задачу, анализируя и подбирая материалы и средства для её решения;
- умение создавать и рассчитывать полётный план для беспилотного летательного аппарата;
 - формирование навыков инженерной культуры.

Содержание программы

Учебный (тематический) план:

No	Наумонования тому	К	оличество	Форма	
п/п	Наименование темы	Всего	Теория	Практика	контроля
1.	Вводное занятие	1	1	-	Задания из рабочей тетради
2.	Понятие космоса	4	2	2	Задания из рабочей тетради
3.	Объекты космического пространства	4	2	2	Задания из рабочей тетради
4.	История освоения космоса. Ученые-первопроходцы	4	2	2	Задания из рабочей тетради
5.	Этапы освоения космоса	4	2	2	Задания из рабочей тетради
6.	Исследования лунной поверхности	2	1	1	Задание из рабочей тетради
7.	Интересные факты про освоение космоса	2	1	1	Задания из рабочей тетради
8.	Доказательство вращения Земли. Маятник Фуко	4	2	2	Задания из рабочей тетради.

					Практическая
					работа №1
9.	Расстояние в космосе	4	2	2	Задания из
					рабочей
					тетради. Практическая
					практическая работа №2
	Движение небесных тел	4	2	2	Задания из
					рабочей
10					тетради.
10					Практическая
					работа №3
	Закон всемирного тяготения	4	3	1	Задания из
					рабочей
11					тетради
					Практическая
					работа №4
	Гравитация	4	2	2	Задания из
					рабочей
12					тетради.
					Практическая
					работа №5
	Гравитационные волны. Гравитационная постоянная	4	2	2	Задания из
13					рабочей
13					тетради. Практическая
					работа №6
	Взаимодействие космических объектов в Солнечной системе	4	2	2	Задания из
					рабочей
14					тетради
					Практическая
					работа №7
	Понятие инерции. Инерция в космосе	4	2	2	Задания из
15					рабочей
					тетради.
					Практическая
					работа №8
16	Итоговое занятие	1	1	-	Итоговый
				25	тест
	Итого:	54	29	25	

Содержание учебного (тематического) плана:

Тема 1. Введение.

Теоретическое занятие (1 ак.час) Ознакомление обучающихся с целями и задачами курса. Обсуждение основных этапов программы и основных тем, которые в ходе курса будут изучаться.

Тема 2. Понятие космоса.

Теоретическое занятие (2 ак.часа) Современное представление о космосе. Значение слова «Космос». Законы строения и развития Вселенной. Физические явления во Вселенной. Современные методы изучения космоса.

Практическое занятие (2 ак.часа) Разбор задач из раздела «Космос» Экспериментальные физические задачи на смекалку. С какими особенностями космического пространства сталкивается человек.

Тема 3. Объекты космического пространства.

Теоретическое занятие (2 ак.часа) Исследование космических явлений. Физическая природа исследования.

Практическое занятие (2 ак.часа) Подготовить доклад на тему «Объект космического пространства». Заслушать доклады учащихся, составить сравнительную таблицу по материалам изложенных выступающими. Провести сравнительный анализ данных таблицы.

Тема 4. История освоения космоса. Ученые-первопроходцы.

Теоретическое занятие (2 ак.часа) Научные открытия и работы ученых Николая Коперника, Джордано Бруно, Галилео Галилея. История развития и рождения идеи полета в космос. Научные труды основателя теоретической космонавтики К.Э. Циолковского.

Практическое занятие (2 ак.часа) Подготовить презентацию о достижениях одного из ученых древнего мира и средневековья, привнёсшего значительный вклад в развития представления о космосе и физических основах космического пространства. Представить результаты учащимся.

Тема 5. Этапы освоения космоса.

Теоретическое занятие (2 ак.часа) Первый запуск космического аппарата. Первые живые существа на орбите. Выход человека в космос. Первая высадка на Луну. Исследование планет Солнечной системы. Международное комплексное изучение космоса. Интенсивное исследование и коммерциализация космоса.

Практическое занятие (2 ак.час) Подготовка временной шкалы с нанесенными этапами и фактами. При построении шкалы учитываются факты развития российской космонавтике и ключевые факты международных открытий и событий.

Тема 6. Исследования лунной поверхности

Теоретическое занятие (1 ак.час) Автоматическая станция «Луна-1». Комплекс «Л-3». Реализованные миссии. Ход миссии. Современная лунная программа.

Практическое занятие (1 ак.час) Подготовка рефератов на тему «В чем связь современной лунной программы и программы СССР?».

Тема 7. Интересные факты про освоение космоса.

Теоретическое занятие (**1 ак.час**) Отцы современной космонавтики. Секретные слова. Первый памятник пилотируемой космонавтике. Сухой закон.

Практическое занятие (1 ак.час) Подготовка рефератов на тему «Самое значимое событие в космонавтике в 21 веке».

Тема 8. Доказательство вращения Земли. Маятник Фуко.

Теоретическое занятие (2 ак.часа) Прибор простой конструкции. Следствия вращения Земли. Особенность вращения Земли. Астрономические сутки. Время и вращение Земли.

Практическое занятие (2 ак.часа) Практическая работа № 1. Создание маятника Фуко. Наблюдение опыта Фуко.

Тема 9. Расстояние в космосе.

Теоретическое занятие (2 ак.часа) Астрономическая единица. Световой год. Парсек. Метод лазерной локации и радиолокации. Метод тригонометрического параллакса. Метод стандартных свечей.

Практическое занятие (2 ак.часа) Практическая работа № 2. Расчет расстояния до звезд. Пространственные скорости до звезд. Решение задач по данной теме.

Тема 10. Движение небесных тел.

Теоретическое занятие (2 ак.часа) Конфигурация и условия видимости планет. Законы Кеплера. Размер и форма Земли. Масса и плотность Земли.

Практическое занятие (**2 ак.часа**) Практическая работа № 3. Движение объектов солнечной системы. Создается макет движение двух любых объектов солнечной системы. Практикум в виртуальном телескопе WorldWide Telescope.

Тема 11. Закон всемирного тяготения.

Теоретическое занятие (3 ак.часа) Теория Исаака Ньютона. Свойства ньютоновского тяготения. История создания закона всемирного тяготения. Недостатки классической теории тяготения.

Практическое занятие (1 ак.часа) Тестирование по теме "Закон всемирного тяготения".

Тема 12. Гравитация.

Теоретическое занятие (2 ак.часа) Сила гравитации. Гравитационные поля. Гравитационное излучение. Эффекты гравитации. Теории гравитации.

Практическое занятие (2 ак.часа) Решение задач по теме Гравитационное поле Земли.

Тема 13. Гравитационные волны. Гравитационная постоянная

Теоретическое занятие (2 ак.часа) Источники гравитационных волн. Регистрация гравитационных волн. Гравитация Ньютона. Теория относительности Эйнштейна. Волны относительности. Физический смысл гравитационной постоянной. Эксперимент Кавендиша. Опыт Жолли.

Практическое занятие (2 ак.часа) Практическая работа № 4. Подготовка макета гравитационного двигателя, созданного с использованием любого принципа (вода, мячик, крылья). Представление результатов. Описание макета и основных сил, которые действуют при работе макета. Обсуждение полученных результатов.

Тема 14. Взаимодействие космических объектов в солнечной системе.

Теоретическое занятие (2 ак.часа) Солнечная система. Объекты солнечной системы. Малые и большие объекты. Основные спутники. Силы, которые удерживают объекты в балансе.

Практическое занятие (2 ак.часа) Подготовка сравнительной таблицы физических характеристик различных объектов Солнечной системы.

Тема 15. Понятие инерции. Инерция в космосе

Теоретическое занятие (2 ак.часа) Неотъемлемое свойство движущейся материи. Закон инерции. Использование явления инерции в космосе.

Практическое занятие (2 ак.часа) Практическая работа № 5. Исследование инерции на опытах. Зависимость инерции от массы тела. Как достать тяжёлый

шарик из песка. Подготовить краткий реферат о космических аппаратах и какая силы была приложена для запуска и движение аппарата.

Тема 16. Итоговое занятие.

Теоретическое занятие (1 ак.час) Выполнение итогового теста, оценка усвоения пройденного в рамках программы материала, который связан с физикой космоса.

Планируемые результаты

Для достижения поставленной цели и реализации задач предмета используются следующие методы обучения:

- а) методы начального усвоения учебного материала:
- словесный (объяснение, рассказ, беседа);
- наглядный (показ, демонстрация, наблюдение);
- практический (упражнения воспроизводящие и творческие).
- б) методы закрепления и совершенствования приобретенных знаний:
- проблемно-поисковый (упражнения по образцу, комментированные, вариативные);
 - практические работы.

В результате изучения программы обучающиеся должны знать:

- принципы формирования технических решений;
- законы физики космоса;
- основы физических явлений и идей;
- взаимодействие космических объектов;
- основные результаты и этапы развития физики космоса.

В результате изучения программы обучающиеся должны уметь:

решать теоретические задачи физики космоса и прикладных задач
будущей профессии;

– применять полученные знания в решении конкретных задач из различных областей физики, связанных с космосом.

Формы контроля и оценочные материалы

В рамках программы применяются следующие формы контроля усвоения материала:

- входной контроль;
- текущий контроль;
- итоговый контроль.

Во время *входного контроля* проводится проверка у обучающихся знаний техники безопасности и правил поведения в учебных классах.

Во время *текущего контроля* обучающиеся выполняют задания из рабочей тетради, доклады, сравнительные таблицы, решение задач, практические работы.

Итоговый контроль включает в себя выполнение итогового теста, который подтверждает усвоение учащимися материала программы.

Критерии оценки достижения планируемых результатов

Уровни освоения		Результат				
программы						
Высокий	уровень	Учащиеся проявляют высокий уровень интереса к изучаемым				
освоения		темам, демонстрируют отличное знание материала, владеют				
программы		терминологией и могут правильно ее использовать при описании				
		рассмотренных технических решений. Могут грамотно				
		формулировать собственные технические решения и предлагать				
		области их применения. Итоговый тест показывает не менее 80%				
		правильных ответов.				
Средний	уровень	Учащиеся проявляют достаточный уровень интереса к изучаемым				
освоения		темам, демонстрируют хорошее знание материала, владеют				
программы		терминологией и в основном могут её использовать при описании				
		рассмотренных технических решений. Могут формулировать				
		собственные технические решения с небольшим количеством				
		ошибок. Обоснование технических решений и области				
		применения не всегда аргументировано. Итоговый тест				
		показывает не менее 60% правильных ответов.				
Низкий	уровень	Учащиеся проявляют недостаточный уровень интереса к				
освоения		изучаемым темам, демонстрируют плохое знание материала, в				
программы		недостаточной мере владеют терминологией и не всегда могут её				
		использовать при описании рассмотренных технических решений.				
		Не могут обосновать технические решения без большого				

Организационно-педагогические условия реализации программы Материально-технические условия реализации программы

Для реализации программы необходимо наличие следующих *технических средств*:

- персональный компьютер;
- проектор;
- принтер с возможность черно-белой или цветной печати;
- кликер;
- лазерная указка;
- компьютерная мышь;
- колонки для воспроизведения аудиоматериалов.

Для реализации программы необходимо наличие следующих материальных средств:

- бумага белая матовая формата А4;
- картриджи, совместимые с принтером;
- ручки и карандаши;
- тетради в клетку объемом 24л;
- оборудованный учебный класс.

Учебно-методическое и информационное обеспечение программы Основная литература

- 1. Большая энциклопедия космоса. Жилинская А. серия Disney. Удивительная энциклопедия. Издательство Эксмо, 2015.
- 2. Введение в физику космоса. Бережко Е.Г. ФИЗМАТЛИТ, 2014.
- 3. Золотое сечение и космос. Пространственная теория материя. Основания геометрической физики. Смирнов В.С. Типография ЦСИ, 2005.

- 4. О Земле и Космосе. Зигуненко С.Н., Мещерякова А.А., Собе-Панек М.В. Аванта, 2018.
- 5. Космос. Прошлое, настоящее, будущее. Левитан Е.Ф., Первушин А.И., Сурдин В.Г. АСТ, 2018.
- 6. Космос. Хомич Е.О. АСТ, 2016.

Дополнительная литература

- 1. Сыромятников В. С.100 рассказов о стыковке и о других приключениях в космосе и на Земле. Часть 2: 20 лет спустя. М.: Университетская книга, Логос, 2008 г.;
- 2. Камин А.А. Космическая одиссея. Занимательная олимпиада по астрономии, физике Земли, физике Космоса, физике полета. М.: Илекса, 2015.
- 3. Уманский С. П. Ракеты-носители. Космодромы М., Рестарт+, 2001г.;
- 4. И.Б. Афанасьев, Ю.М. Батурин, А.Г. Белозерский, Мировая пилотируемая космонавтика. История. Техника. Люди— М.: Издательство «РТСофт», 2005 г.
- 5. В. Н. Ланге. Экспериментальные физические задачи на смекалку: Учебное руководство.— М.: Наука. Главная редакция физико-математической литературы, 1985

Интернет ресурсы

- 1. https://aviationtoday.ru/poleznoe/pervyj-samolet-v-istorii.html#i
- 2. http://monitor.espec.ws/section10/topic136855p40.html
- 3. https://spaceobjects.neocities.org/
- 4. https://asteropa.ru/istoriya-pokoreniya-kosmosa/
- 5. https://www.istmira.com/novosti-istorii/13319-etapy-osvoeniya-

kosmosa.html

- 6. http://obshe.net/posts/id1840.html
- 7. https://zen.yandex.ru/media/pronauka/kak-rabotaet-maiatnik-fuko-5ce9964ed2421400b4587e86
- 8. https://spacegid.com/rasstoyaniya-v-kosmose.html

- 9. https://yandex.ru/turbo/scfh.ru/s/lecture/osnovy-nebesnoy-mekhaniki-/
- 10. https://interneturok.ru/lesson/physics/10-klass/bsily-v-mehanikeb/gravitatsionnoe-vzaimodeystvie-zakon-vsemirnogo-tyagoteniya
- 11. https://blog.mann-ivanov-ferber.ru/2016/02/12/gravitacionnye-volny-chto-eto-takoe-v-chem-cennost-otkrytiya-i-kak-ustroen-detektor-voln-v-ligo/

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 303540294533635982749676679132712847518854643092

Владелец Дикин Николай Александрович

Действителен С 13.03.2025 по 13.03.2026